
www.elsevier.com/locate/jcp

Journal of Computational Physics 193 (2003) 317–348
A fast solver for the Stokes equations with distributed
forces in complex geometries q

George Biros *, Lexing Ying, Denis Zorin

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

Received 16 July 2002; received in revised form 5 August 2003; accepted 11 August 2003
Abstract

We present a new method for the solution of the Stokes equations. The main features of our method are: (1) it can be

applied to arbitrary geometries in a black-box fashion; (2) it is second-order accurate; and (3) it has optimal algorithmic

complexity. Our approach, to which we refer as the embedded boundary integral method (EBI), is based on Anita

Mayo�s work for the Poisson�s equation: ‘‘The Fast Solution of Poisson�s and the Biharmonic Equations on Irregular

Regions’’, SIAM Journal on Numerical Analysis, 21 (1984) 285–299. We embed the domain in a rectangular domain,

for which fast solvers are available, and we impose the boundary conditions as interface (jump) conditions on the

velocities and tractions. We use an indirect boundary integral formulation for the homogeneous Stokes equations to

compute the jumps. The resulting equations are discretized by Nystr€oom�s method. The rectangular domain problem is

discretized by finite elements for a velocity–pressure formulation with equal order interpolation bilinear elements

(Q1–Q1). Stabilization is used to circumvent the inf–sup condition for the pressure space. For the integral equations,

fast matrix-vector multiplications are achieved via an N logN algorithm based on a block representation of the discrete

integral operator, combined with (kernel independent) singular value decomposition to sparsify low-rank blocks. The

regular grid solver is a Krylov method (conjugate residuals) combined with an optimal two-level Schwartz-precondi-

tioner. For the integral equation we use GMRES. We have tested our algorithm on several numerical examples and we

have observed optimal convergence rates.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Stokes equations; Fast solvers; Integral equations; Double-layer potential; Fast multipole methods; Embedded domain

methods; Immersed interface methods; Fictitious domain methods; Cartesian grid methods; Moving boundaries
qThis work is supported by the National Science Foundation�s Knowledge and Distributed Intelligence (KDI) program through

Grant DMS-9980069.
*Corresponding author.

E-mail addresses: biros@cs.nyu.edu (G. Biros), lexing@cs.nyu.edu (L. Ying), dzorin@cs.nyu.edu (D. Zorin).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.08.011

mail to: biros@cs.nyu.edu

318 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
1. Introduction

The Stokes equations model very low Reynolds number flows and incompressible linearly elastic solids.
They also serve as building blocks for solvers for the velocity–pressure formulation of the Navier–Stokes

equations. In this paper we present a method for solving the steady two-dimensional Stokes equations in ir-

regular domains. Our motivation in developing this method is to develop efficient algorithms for flows with

moving boundaries. Solving such problems efficiently requires algorithms that do not require expensive

preprocessing, like unstructured mesh generation, as the boundary positions change at each time step.

The main features of our method are:

• It can be applied to arbitrary piecewise smooth geometries; the method does not require mesh genera-

tion.
• It can solve problems with distributed forces.

• It is second-order accurate and easily generalizes to arbitrary order of accuracy.

• If an optimal boundary integral equation solver is used, the method has OðN logNÞ complexity.1

In addition, robust parallel algorithms exist for all the components of this method, both in two and three

dimensions. Finally, the method is relatively straightforward to implement.

Our method is based on potential theory for linear second-order elliptic operators. Using an indirect

integral formulation, the solution of a Dirichlet problem can be written as the sum of a double layer po-

tential and a Newton potential (the domain convolution of Green�s function with the distributed force).
Under such a scheme the evaluation of the solution must consist of three steps: (1) computation of the

Newton potential, (2) solution of a boundary integral equation to compute a double layer potential that

satisfies the boundary conditions, and (3) evaluation of a double layer potential everywhere in the domain.

In theory, all steps can be performed with optimal complexity using the fast multipole method (FMM)

[21,51]. Only one step requires solving an equation, the other two steps are evaluations of integrals.

However the are several practical problems that have prevented the broad application of approaches of

this type. FMM depends on analytic kernel expansions; computing these expansions may be computa-

tionally expensive, which results in large constants in method�s complexity, which can easily negate the
asymptotic advantages of the method even for problems of moderate size. Because work-efficient, highly

accurate implementations are far from trivial. This is the reason that such implementations exist only for

the Laplace and Helmholtz operators. For example, an efficient scheme for the three-dimensional Laplacian

was developed more ten years after the original method was introduced [22]. Furthermore, the complexity

constants of the FMM are high, and often, for problems that do not require adaptive discretization, regular

grid schemes like multigrid or FFT are much faster [19,39,44]. Finally, due to singularities, computing the

near field interaction, either for the Newton potential or for evaluations near the boundary can involve

increased computational costs and implementation complexity, and is an active research topic
[5,12,19,38,54].

For these reasons we have opted to use a different approach in order to compute the Newton potentials

and to evaluate the solution everywhere in the domain. Our method, to which we refer to as the embedded

boundary integral method (EBI), is an extension of Anita Mayo�s work [37], for the Laplace and bihar-

monic operators. This approach was also used in [39] in combination with fast multipole methods for the

boundary integrals only, and was extended in three dimensions [19], again for the Laplacian operator.

Instead of using direct integration, we use an efficient regular grid solver for the first and last steps. Note

that the asymptotic complexity of the computation does not increase, as the solver is guaranteed to con-
verge in a fixed number of steps for a fixed precision.
1 In this paper we present an OðN logNÞ variant, however the method can be changed to an OðNÞ algorithm – by switching to a

classical FMM method for the boundary integral solver.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 319
More specifically, the method handles the three steps enumerated above as follows. The flow domain is is

embedded in a larger simple rectangular domain, which can be easily refined to obtain a structured regular

grid. At the first step, we extend the distributed force to this simple domain and then solve the regular grid
problem. At the second step, we solve a boundary integral equation for the boundary conditions. This

equation yields values for velocity and pressure jumps across the boundary of the original domain, which is

now regarded as an interface. The third step step is evaluation the velocities and pressures everywhere in the

domain. Another regular grid solve is used; however, this time, Taylor expansions are used to express

velocity and pressure jumps as a body force at regular grid points which are close to the interface. This body

force, which appears in the right hand side of a the regular grid problem, we call Taylor expansion stencil

correction (TESC). In greater detail, the steps are discussed in Section 2.

The fact that we use regular grid solvers is of crucial importance for making the method more practical
and suitable for applications where the boundaries change. First, the domain does not depend on the

geometry of the problem, and no mesh generation is required. Second, unlike the case of unstructured

meshes, relatively simple and highly efficient multilevel preconditioners with well-understood properties are

readily available.

In this paper we apply this approach to the Stokes equation and present fast numerical methods for

solving the boundary integral equations and the corrected equations on the regular grid. We have also

extended the method to the elastodynamics and to the unsteady Navier–Stokes equations. For the latter

preliminary results can be found in [6].
An additional benefit of solving the equations on the interface (second step) results in a natural for-

mulation for coupled problems. For example in fluid-solid interaction problems, the interface conditions

are the continuity of the tractions and of the velocities; these conditions can augment boundary integral

formulations for the solid and fluid. If an implicit method is used to solve the equations, in this formulation

the nonlinear iterations can be restricted on the interface. While time dependent problems require volume

computations, a fast solver on a structured grid helps to minimize the computational cost of the volume

discretization. These considerations indicate that the EBI-based methods may have advantages for such

problems which we plan to explore in the future.

1.1. Related work

1.1.1. Finite elements

Undoubtedly finite element methods are one of the most successful discretization methods and allow for

the accurate solution of problems in arbitrary geometries. Nevertheless, application of such methods to

problems with complex geometries has several difficulties; two main difficulties are mesh generation and

design of efficient solvers.

First, for large-scale problems, especially 3D problems and problems with moving boundaries, mesh

generation takes a significant fraction of the total computation time. As parallel computation is necessary

to solve realistic problems with sufficient accuracy, mesh generation should be also done in parallel.
Furthermore, for problems with moving boundaries, the mesh needs to be frequently regenerated, which

requires a robust purely automatic mesh generator which guarantees element quality. Although a lot of

progress was made in recent years [2,26] at this time, we are not aware of any algorithm that meets all of

these requirements: i.e. does not require user intervention, has an efficient and robust parallel implemen-

tation and guarantees element quality both in two and three dimensions. In fact, in 3D, even sequential

guarantee-quality mesh generation for arbitrary boundaries remains an area of active research. The state of

the art is discussed in [33,52,53].

Second, once the discretized operators have been constructed, optimal complexity inversion algorithms
require multilevel techniques such as multigrid or domain decomposition [9,10], which extend to

unstructured grids. However, for unstructured meshes, the main problem is related to automatically

320 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
generating quality coarse meshes from the user-specified mesh. Algebraic multigrid, a method that does not

require multilevel meshing, has been successfully applied to scalar positive definite operators, but has not

been extended to vector PDEs or indefinite operators like the Stokes equations [55].

1.1.2. Cartesian grid methods

State-of-the-art methods for problems in complex geometries, most often found in applications with

dynamic interfaces, are based on regular grid or Cartesian grid discretizations, due to their efficiency,

parallel scalability, and implementation simplicity.

Research on this topic dates back to the seventies [8]. Most of the fundamental ideas that we will discuss

below, the connection between immersed interfaces, potential theory and integral equations, the interpo-

lation-based approximations of jumps, the stencil modification around the boundary, and the utilization of
regular grids, go back to the capacitance matrix method [49]. This method solves Neumann and Dirichlet

problems for the Laplace and Helmholtz problems using domain embedding and finite differences. The

stencils that cross the interface are modified and the resulting matrix is written as a sum of the standard

five-point Laplace operator and of a low-rank modification. This matrix can be inverted by the Sherman–

Morrison–Woodbury formula. Instead the authors solve for the jump conditions first (the discrete po-

tential). For the Neumann problem the two approaches are equivalent, but not for the Dirichlet problem,

since the double-layer approximation results in well-conditioned problems for the unknown interface

jumps. One shortcoming of the method is the requirement of a variable number of regular grid solves.
One of the most successful techniques is the immersed boundary method [41,42] which was designed for a

Poisson problem for the pressure within a projection algorithm for the unsteady Navier–Stokes equations.

The interface is modeled as a set of one-dimensional delta functions whose discretization gives a forcing

term. The method is first-order accurate due to smearing of the boundary layers by the discrete delta

functions.

The immersed interface method [31] is an extension of the immersed boundary method which is second-

order accurate. It is designed for problems with discontinuous coefficients and singular forces. It has been

successfully applied to moving boundary problems, for example for the Stokes problem with elastic in-
terfaces [32] and for the Navier–Stokes problem [35]. If the singular forces are known then the jumps are

known and TESCs can be computed explicitly. For discontinuous coefficients IIM modifies the stencils for

points close to the boundary in order to account for the jump conditions. The method results in matrices

with non-standard structure and fast methods are not straightforward to apply. The immersed interface

method as presented in [31] was not used on Dirichlet and Neumann problems in general irregular regions,

since it requires known jump conditions. In [14], IIM is extended to Neumann problems by modifying

interface stencils to account for the unknown jumps. Later versions of IIM (explicit immersed interface

method) [56], (fast immersed interface method) [34], addressed non-standard matrices by adding additional
equations for the jumps and extended IIM to Dirichlet problems. These approaches however appear to

result in considerable additional computational cost since they require tens to hundreds of regular grid

solves.

Next, we examine several groups of methods which share some common features, including finite-

volume and fictitious domain methods. These methods produce discretizations based on regular grids,

with modified stencils and/or right-hand sides to account for the embedded interfaces. Cheng and Fedkiw

[11] describe a second-order method for the Dirichlet boundary problem. This method results in sym-

metric positive definite matrices with diagonally modified stencils and with additional terms on the right
hand side. In Cartesian finite-volume methods, the stencils modifications are derived from appropriate

modification of finite-volume cells to account for the intersections of the Cartesian grids with the interface

[1,25].

An algorithm, similar to the IIM and capacitance matrix methods but which first appeared within the

finite element community, is the fictitious domain method [13,16]. Based on a finite element variational

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 321
formulation, Dirichlet boundary conditions are imposed weakly as side constraints. This approach results

in a saddle-point problem that includes the primitive variables plus Lagrange multipliers. In fact, certain

fictitious domain methods are intimately related to the IIM and EBI methods. It can be shown that the
Lagrange multipliers correspond to Neumann condition jumps.

In our examination of the above methods, we restrict our attention to problems with constant coeffi-

cients and force singularities which cause interface jumps. When these jumps are a priori known, the stencil

modifications can be transferred to the right hand side using TESC. However this is almost never the case.

In general, interface discontinuities have to be solved for. One approach is to modify the stencils of the

discretization close to the interface (Cartesian grids, immersed interface method, Cheng and Fedkiw

method), or to introduce additional equations (fictitious domain, immersed boundary, fast immersed in-

terface, explicit immersed interface). However, modified stencils make it more difficult to apply fast solvers,
especially if the boundaries are moving. If additional unknowns are used, a common approach to solving

the resulting system is to invert the Schur complement corresponding to these unknowns. These Schur

complement matrices correspond to discretizations of integral equations [49]. A matrix-vector multiplica-

tion with such matrix will be expensive since it involves a regular grid solve.

The EBI method computes the jumps directly via boundary integral equations, and circumvents costly

computations used by other methods by decoupling the interface from the regular grid. Only one integral

solve and two regular grid solves are required independently of the complexity of the interface. The main

downsides of this approach is that it is restricted to piecewise constant coefficient problems, and that for a
scalable and efficient implementation a fast dense matrix multiplication algorithm is needed. In this paper

we discuss an efficient N logN algorithm that can be used with any kernel with rapid decay properties, and

only requires kernel evaluations, but for optimal asymptotic complexity an FMM-type method is required,

with implementation details depending on the choice of the kernel.
1.1.3. Integral formulations for the Stokes problem

Several researchers have used boundary integral formulations to solve the homogeneous Stokes prob-

lem. The basic formulation can be found in [29,46,47]. In [17,36,45], the homogeneous Stokes problem is
solved using boundary integral representation combined with multipole-like far-field expansions to accel-

erate the matrix-vector multiplications. In [43,48,57] boundary integral equations have been used for

problems with moving and deforming boundaries. In [20] the homogeneous Stokes problem is posed as a

biharmonic equation and it is solved for both interior and exterior problems. Inhomogeneous problems

however, cannot be reduced to a pure boundary integral formulation. As discussed above, evaluation of

Newton potentials is required.
1.2. Overview and notation

In the next section we present the overview of the method. Subsequent sections address the details of the

boundary integral formulation (Section 3); discretizations of the boundary integral equations (Section 4.1),
regular domain equations (Section 4.2) and Taylor expansion stencil corrections (Section 4.3). Section 5

discusses the implementation of the method, a fast SVD-based solver for the boundary integral equation in

particular. In Section 6we concludewith numerical experiments that demonstrate the accuracy of themethod.
1.2.1. Notation

Scalars will be denoted with lowercase italics, vectors with lowercase boldface letters; tensors and ma-

trices will be denoted with uppercase boldface letters. Infinitely dimensional quantities will be in italics,

whereas finite dimensional ones (usually discretizations) will be non-italic fonts. We use ½½��� to denote the
jump of a function across an interface (exterior–interior).

322 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
2. High level description of the EBI method

We seek solutions for the interior, possibly multiply connected, Stokes problem with Dirichlet boundary
conditions. We choose a primitive variable formulation (velocities and pressures), for which the momentum

and mass conservation laws are given by

�mDuþrp ¼ b in x; div u ¼ 0 in x; u ¼ g on c: ð1Þ

Here u is the velocity field, p is the pressure, b is a known forcing term, and g is a given Dirichlet boundary

condition for the velocity. The stress tensor S associated with the velocity and pressure is given by

S ¼ �pIþ mð$uþ $uTÞ: ð2Þ

We split the solution of the problem into several steps as follows. We first embed x in an easy-to-dis-

cretize domain X, typically a rectangle. By linearity we decompose (1) into two problems: one problem that

has an inhomogeneous body force and zero boundary conditions for X; the other has no body force, but

nontrivial boundary conditions

�mDu1 þrp1 ¼ b in X; div u1 ¼ 0 in X; u1 ¼ 0 on C; ð3Þ
�mDu2 þrp2 ¼ 0 in x; div u2 ¼ 0 in x; u2 ¼ g � u1 on c: ð4Þ

The domain X is chosen to make the fast solution of (3) possible (Section 4.2). For (4) we use a double layer

boundary integral formulation (Section 3) to obtain the hydrodynamic density, l, on the boundary c. The
solution u2 for an arbitrary point in the interior of x is the convolution of the double layer kernels with the

density. The solution of the original problem (1) is u ¼ u1 þ u2, p ¼ p1 þ p2.
In practice however, evaluating u2 using convolution presents the same difficulties as the evaluation of a

forcing term by convolution. A different approach proposed by Mayo [37], is to use the fact that once
problems (3) and (4) are solved, the jumps of the solution u can be very accurately computed on c. Con-
ceptually, there is a discontinuous extension u3 of u2 on X that satisfies

�mDu3 þrp3 ¼ 0 in X; div u3 ¼ 0 in X; u3 ¼ u2 on C; ð5Þ
½½u3��c ¼ l; ½½S3n��c ¼ ½½�p3nþ mð$u3 þ $uT3 Þn��c ¼ 0: ð6Þ

Numerically, this problem is solved using the same solver used for problem (3), but with a right-hand
side that takes into account the interface jumps computed from the velocity density (Section 4.3).

In summary, the EBI approach uses the following steps:

1. Solve problem (3) on the simpler domain X using multigrid or two-level domain decomposition method.

2. Solve the boundary integral problem derived from (4) on c to obtain the velocity density, using an inte-

gral equation formulation with mesh independent condition number, spectrally accurate discretization

and a kernel-independent fast multipole acceleration.

3. Compute the right-hand side corrections from the velocity density.

4. Solve the second regular problem on X with the computed right-hand side.
5. Add the solutions obtained at steps 1 and 4 to obtain the complete solution on x.
3. The double layer formulation for the Stokes equations

In this section we describe the double layer integral formulation of a problem of the form (4). We have

opted to use a primitive variable formulation instead the formulation used in [20] since it can be extended

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 323
without modifications in the three-dimensional case. We assume that the boundary curve c is curvature-

continuous, and the domain x is bounded. We use the notation

C½w�ðxÞ :¼
Z
c
Cðx; yÞwðyÞdcðyÞ;

to denote the convolution for a kernel C; Cðx; yÞw is a dot product for vector kernels and matrix-vector

product for matrix kernels.

The fundamental solution for the Stokes operator in two dimensions it is given by

Uðx; yÞ ¼ UðrÞ :¼ 1

4p
ln

1

q

�
þ r� r

q2

�
; ð7Þ

x is the observation point, y is the source point, r :¼ x� y, q :¼ krk2, and � is the tensor product of two

vectors. This kernel is also known as the Stokeslet.
Similar to the potential theory for the Laplace equation we can introduce single and double surface

potentials for the velocity and the pressure. We use only the double layer potential D for velocity and the

double layer potential for pressure K:

Dðx; yÞ :¼ 1

p
r � nðyÞ
q2

r� r

q2
; Kðx; yÞ :¼ �m

1

p
1

q2
I

�
� 2

r� r

q2

�
nðyÞ; ð8Þ

where nðyÞ is the outward surface normal at a boundary point y. For a derivation of [46,47].

We limit our discussion to the interior Dirichlet problem. Its extension to exterior problems is trivial. We

have opted to use an indirect double layer formulation for the Dirichlet Stokes problem. This approach

results in a Fredholm equation of second kind. Combined with N€yystrom discretization it results in linear

systems with bounded condition number, and it is superalgebraically convergent for analytic geometries.

Second kind formulations are also well known for the Neumann problem.

We represent the velocities and pressures as surface potentials convolved with the double layer kernel

uðxÞ ¼ D½l�ðxÞ; pðxÞ ¼ K½l�ðxÞ; x in x: ð9Þ

Here u is the hydrodynamic potential and l is the hydrodynamic density. Taking limits across the boundary

from the interior and exterior regions we obtain

uðxÞ ¼ � 1

2
lðxÞ þD½l�ðxÞ; x on c: ð10Þ

The velocity u has to satisfy
R
c u � ndc ¼ 0, a direct consequence of the conservation of mass. This constraint

is an indication that for the simply connected interior problem the double layer operator has a null space of

dimension at least one. In fact, it can be shown ([46], p. 159) that the dimension of the null space is exactly
one. The null space can be removed by a rank-one modification ([46], p. 615). Let Nðx; yÞ ¼ nðxÞ � nðyÞ.
We represent u as

uðxÞ ¼ � 1

2
lðxÞ þD½l�ðxÞ þN½l�ðxÞ; x on c: ð11Þ

More generally, for the multiply connected interior problem, a direct calculation can verify that the

double layer kernel has a larger null space: it is spanned by potentials that correspond to restrictions of rigid

body motion velocity fields on the boundary. These fields generate zero boundary tractions and thus belong

to the null space of the double layer kernel. Suppose that the boundary c consists of nþ 1 components

c0; c1; . . . ; cn, where c0 encloses all other components, and let cp; p ¼ 1; . . . ; n be an interior point of cp.
Following [46], we represent u as

324 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
uðxÞ ¼ � 1

2
lðxÞ þD½l�ðxÞ þN½l�ðxÞ þ

Xn

p¼1

UðrpÞap½l� þ
Xn

p¼1

RðrpÞbp½l�; ð12Þ

where rp ¼ x� cp, RðrÞ ¼ r?=4pq2, and if r ¼ ðr1; r2Þ, r? ¼ ðr2;�r1Þ.
The coefficients ap and bp are computed by augmenting (12) withZ

c
wj

pðyÞ � lðyÞdcðyÞ ¼ ap; j ¼ 1; 2;Z
c
w3

pðyÞ � lðyÞdcðyÞ ¼ bp:

ð13Þ

Here wi
p; p ¼ 1; . . . ; n; i ¼ 1; 2; 3 are 3n functions spanning the null space of the double layer potential.

These functions are explicitly known wi
pðyÞ ¼ ðd1i; d2iÞ for i ¼ 1; 2. w3

pðyÞ ¼ ðy2;�y1Þ on cp – they are fluid

rigid-body motions, restricted on cp. In [46] is shown that Eqs. (12) and (13) guarantee a unique solution of

l; a and b for general admissible boundary condition u.

3.1. Jump computation

Once the density l is known, we need to compute the jumps at the interface and the velocity to use in

Eq. (5) Eq. (9) is defined for points inside x. We can use exactly the same relation to extend u in R2= �xx.
The resulting field is discontinuous across the interface.

From the properties of the double layer kernel for an interior problem we have the following jump

relations for velocity and stress:

½½u�� ¼ l; ½½Sn�� ¼ 0: ð14Þ
The jump on the pressure can be deduced if we notice that the double layer kernel Kðx; yÞ can be

also written as �2m$xðLðx; yÞÞ, where Lðx; yÞ ¼ ðr � nðyÞÞ=q2 is the double layer kernel for the Laplace

equation.

From (14) we can derive a condition for the pressure

½½p�� ¼ �2ml � t; ð15Þ

where t is the curve tangent.

In addition to jumps in velocity and pressure, we also need the jumps for derivatives of velocity and

pressure as well as the jumps in second derivatives of the velocity; these jumps are used to compute cor-

rections to ensure second-order accuracy of the solution of the problem on the domain X. The derivation is

presented in the appendix.
4. Discretization

4.1. Boundary integral equation

We discretize (11) by the Nystr€oom method combined with the composite trapezoidal rule which achieve

superalgebraic convergence for smooth data. Without loss of generality we assume x to be simply con-

nected. Note that the double layer kernel has no singularities for points on the boundary. Indeed,

lim
y!x

Dðx; yÞ ¼ � 1

p
ðt � tÞ k

2
; x; y on c;

where t and k are the tangent vector and the curvature at x.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 325
Let ½0; 2p� be the curve parameterization space and n the number of discretization points with h ¼ 2p=n.
We discretize by

uðyðihÞÞ ¼ � 0:5lðihÞ þ 1

h

Xn

j¼1

DðyðihÞ; yðjhÞÞlðyðjhÞÞk$yðjhÞk2

þ nðyðihÞÞ
Xn

j¼1

lðyðjhÞÞ � nðyðjhÞÞk$yðjhÞk2; i ¼ 1; . . . ; n;

or

ui ¼ �0:5li þ
1

h

Xn

j¼1

Dijljk$yjk2 þ ni
Xn

j¼1

lj � njk$yjk2; i ¼ 1; . . . ; n; ð16Þ

which results in a dense 2n� 2n linear system. Here yð�Þ is the parameterization of c.
While resulting system has a bounded condition number, it is dense. Fortunately, one can take

advantage of the fast decay of Green�s function with distance and use a fast method to solve the system.

A number of such methods exist; we use an SVD-based method described in detail in Section 5.1.

4.2. Finite element formulation of the regular region

To solve the equations in the regular domain X we use a finite-element discretization of the Stokes

operator. It should be noted that we use the finite-element formulation primarily as a convenient mecha-

nism to derive the discretization of the problem. For the regular grid the discrete system obtained by using

finite elements is identical to a system obtained by a specific choice of finite difference stencils to which we
can apply the right-hand side corrections described in Section 4.3.

We have chosen to solve for the velocity and pressure simultaneously rather than use an Uzawa or

pressure correction algorithm using a finite element method with Q1–Q1 bilinear elements.The advantage of

the Q1–Q1 elements is that they probably result in one of the simplest implementations for the Stokes

system since they allow equal order interpolation for the velocity and the pressure on a unstaggered grid. 2

A survey and related references on finite element methods for the Navier–Stokes equations can be found in

[23,24].

With L2ðXÞ we denote the space of scalar functions (in X) which are square-integrable and with H1ðXÞ
we denote vector functions whose first derivatives are in L2ðXÞ.

We also define

V :¼ v 2 H1ðXÞ : vjC
�

¼ 0
�
;

Q :¼ / 2 L2ðXÞ :
Z
X
/dX

�
¼ 0

�
:

The domain integral constraint in Q is necessary for pressure uniqueness (for Dirichlet problems pressure is
defined up to a constant). It can be implemented by a null space correction within Krylov iterations or by

setting the pressure datum at a boundary discretization node. We choose the former since it results in better

conditioned linear systems [7].

In the weak formulation of (1) we seek u 2 H1ðXÞ and p 2 Q such that
2 P1–P1 could also have been used, but the implementation is somewhat more sensitive on the stabilization parameter [40].

326 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
Z
X
m$u � $vdX�

Z
X
pdiv vdX�

Z
X
b � vdX ¼ 0 8v 2 V ; ð17Þ
�
Z
X
qdiv udX� bh2

Z
X
$p � $qdX ¼ 0 8q 2 Q: ð18Þ

In unconstrained elliptic systems like the Laplace and elasticity equations mere inclusion of the finite

element spaces within the continuum spaces suffices for convergence. However, this is not the case for the

Stokes equations and the choice of the pressure approximation function space cannot be independent of the

choice for the velocities [23]. To ensure convergence, the well-known (inf–sup condition) needs to be

satisfied, which is not satisfied by the Q1–Q1 element. The weighted diffusive term in (18) is introduced to
circumvent the inf–sup condition [23]; parameter b controls the amount of stabilization. In [40] it is

shown how to choose an optimal value for b; for regular domains and periodic boundary conditions

b ¼ 1=24. The resulting approximation is second-order accurate for the velocities and first-order accurate

for the pressures in the L2 norm.

The resulting discrete system is

U 0 B1p

0 U BT
2p

Bp1 Bp2 �bh2V

2
4

3
5 u1

u2
p

8<
:

9=
; ¼

b1
b2
0

8<
:

9=
;; ð19Þ

where U is the Laplacian with Dirichlet boundary conditions, V is the Laplacian with homogeneous

Neumann boundary conditions (since the pressure is unknown on the boundary). The corresponding finite

difference stencils are provided in the appendix.

We use this discretization to solve all equations on the rectangular domain X. When solving the system

(5) we apply corrections computed as described in Section 4.3 to the right-hand side of the system, which

ensures second-order convergence. The derivation of these corrections is based on the standard finite

difference analysis, assuming sufficient smoothness of the solution. Although the discretization we use is

derived using finite elements, truncation error can be easily shown to be second-order accurate for (3).
However standard maximum principle techniques cannot be used for the Stokes equations, because they

correspond to an indefinite and thus not coercive operator. For this reason we use FEM theory to obtain an

error estimate in the L2 norm.

Given f in H�1ðXÞ, and g in L2ðXÞ for the stabilized Q1–Q1 formulation we know that the following

problem has a unique solution. Find uh 2 Vh, p 2 Qh such thatZ
X
m$uh � $vh dX�

Z
X
ph divvh dX ¼

Z
X
f h � vh dX 8vh 2 Vh; ð20Þ
�
Z
X
qh divuh dX� bh2

Z
X
$ph � $qh dX ¼

Z
X
gh qh dX 8qh 2 Qh: ð21Þ

If we denote k � km the usual norm in HmðXÞ, standard regularity results [15] give

kuhk1 þ kphk0 6 cðkf hk�1 þ kghk0Þ;

or (since k � k�1 6 k � k0 6 k � k1)

kuhk0 þ kphk0 6 cðkf hk0 þ kghk0Þ: ð22Þ

Now let wh ¼ fuh; phg and bh ¼ ff h; ghg. We can associate a linear operatorAh to (20), mapping wh to bh;
since (20) has a unique solution for all bh, we can also write wh ¼ A�1

h bh. The regularity condition (22)

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 327
implies that kwhk0 6 kbhk0 and thus kA�1
h k0 61. Then if eh is the approximation error and sh the truncation

error, we get eh ¼ A�1
h sh, or kehk0 6 kA�1

h k0kshk0. If we assume that kshk0 is Oðh2Þ we obtain kehk0 ¼ Oðh2Þ.
In our numerical experiments we have observed a similar convergence rate in the infinity norm.

4.3. Taylor expansion stencil corrections

In this section we show how discontinuities across the interface (jumps) can be used as a correction term

for a discretization obtained using a simpler domain in which the interface is embedded.

The derivation of the basic formulas for the corrections does not depend on the problem, as long as the

jumps of the variables across the interface can be computed.
To illustrate the basic idea, suppose we solve Poisson�s equation Du ¼ b, in x with given Dirichlet

boundary conditions on c (Fig. 1). Assume further that we use a discontinuous extension of u in X which

satisfies the same equation outside x. We assume that the discontinuities are known up to second deriv-

atives. Typical discretizations of elliptic PDE�s (finite elements, finite differences or finite volumes) produce

a linear system with ith equation of the form aui þ
P

j bjuj ¼ fbi, where j runs through the neighbors of ui.
The coefficients of the equations for regular grids are the same for all interior points, and depend only on

the relative position of ui and uj. These coefficients together with corresponding relative displacements are

usually referred to as stencils. For the standard 2D five-point discrete Laplacian (Fig. 1(a)) the equations
have the form ð1=4Þui �

P4

j¼1 uj ¼ h2bi, where h is the mesh size.

In the absence of an interface this stencil is well defined and second-order accurate. For stencils that

intersect with the interface, however, this is not true, as the solution is discontinuous across the interface. In

Fig. 1(b), we show an example for which two unknowns ui and ue are related in a discretization stencil that

‘‘crosses’’ the interface at point X . The limit of the solution from the interior is denoted as u�i and the limit

from the exterior is denoted as u�e . The key idea is that the truncation error of the stencil can be corrected to

be second (or higher-order) accurate if we know the difference between the interface limits, and not their

exact values. Define n ¼ p=h to be the unit-length direction vector oriented from ui to ue, pe ¼ hen and
pi ¼ hin, Fig. 1(b). By using Taylor expansions we can write

ue ¼ u�e þ heDu�e � nþ
h2e
2
n � ðD2u�eÞnþ Oðh3Þ

¼ ð½½u�� þ u�i Þ þ heð½½Du�� þDu�i Þ � nþ
h2e
2
n � ð½½D2u�� þD2u�i Þnþ Oðh3Þ: ð23Þ
Fig. 1. Stencil corrections. (a) The irregular domain x is embedded in a simpler domain X. For the depicted stencil the truncation error

is constant as the discretization step decreases. (b) shows the notation for computing the correction terms.

328 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
Defining

si ¼ ½½u�� þ he½½Du�� � nþ h2e
2
n � ½½D2u��n ð24Þ

and expanding u�i using Taylor series at ui we obtain

ue ¼ ui þ hDui � pþ
h
2
p � ðD2uiÞpþ si þ Oðh3Þ:

Similarly we can write

ui ¼ ue � hDue � pþ
h2

2
p � ðD2ueÞpþ se þ Oðh3Þ;

where se is given by

se ¼ �
�
½½u�� � hi½½Du�� � nþ h2i

2
n � ½½D2u��n

�
: ð25Þ

For the stencil centered at ue we use (25) and for the stencil centered at ui we use (24). More specifically, in

the equation aui þ beue þ � � � ¼ fbi, we replace ue with ue � si, which results in the correction to the right-

hand side besi, and yields the desired accuracy.

By using the correction term we achieve Oðh3=2Þ truncation error for a second-order discretization of the

Laplacian for the points immediate to the boundary and Oðh2Þ for the remaining set of points. This results
in an Oðh2Þ discretization error for all points [31,37]. It also implies a second-order truncation error in the

L2 norm. Therefore second-order convergence can be achieved using jump information up to second

derivatives.
5. The implementation of the EBI method

In this section we summarize the algorithmic components of the EBI method and we provide some
implementation details.

The input data are the boundary geometry c, the body force, and the boundary conditions. The

boundary is represented as a collection of cubic B-spline curves. Solution includes the following steps:

1. Define the regular domain X. Its boundary C (Fig. 1) should not be too close to the boundary of

the target domain, since we use (9) to evaluate the velocity; the integrals are nearly singular as we

approach c.
2. Solve problem (3) on the rectangular domain X. We use standard numerical methods to solve the discret-

ized system as discussed in Section 6. tests the forcing term is analytically known everywhere; in the gen-
eral case it will be known only in the domain. We have used Shepard cubic extrapolation [50] to compute

a smooth extension of the body force.

3. Solve of the boundary integral equation corresponding to (4) using SVD acceleration discussed in Section

5.1. This step requires the trace of a particular solution to correct the boundary conditions for u2 by set-

ting u2jc ¼ g � u1jc. We use cubic Lagrange interpolation to compute u1 on c. Provided that the trace is

interpolated consistently to the accuracy of the FEM solution, and provided the density calculation is

higher-order accurate, the error in the boundary integral equation data (u2jc includes the approximation

error from u1) does not decrease the overall accuracy of the method.
4. Compute corrections using the density. First we compute the intersections of c with the regular grid, us-

ing a standard Bezier-clipping algorithm. Then, using the hydrodynamic density we evaluate the correc-

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 329
tion terms for the regular grid neighbors of every intersection point. Furthermore, in order to compute

the jumps we need to compute first and second derivatives of the density. For this purpose we use cubic

spline interpolation for every curve on the boundary.

5. Solve (5) to evaluate the homogeneous solution. For this step we need to set appropriate boundary con-
ditions on C. We use (9) to evaluate the boundary condition. For this step we use a dense evaluation of

the boundary integral. This approach is not scalable but the constant is very small. SVD acceleration can

be used.

The overall solution is given by the restriction in x of the sum of the particular and the homogeneous

solutions.

To compute the solution we need two numerical methods: one to solve the boundary integral equations

and the other to solve the linear systems obtained by discretization of the Stokes equation on X.

5.1. Fast BIE solver using SVD

The linear systems resulting from the Nystr€oom discretization of a double layer potential have bounded

condition number. The double layer kernel is weakly singular, and thus compact for domains with

C1-boundary. Compact perturbations of the identity have bounded condition number; for such system the

expected number of iterations for a Krylov method (like GMRES) will be independent of the mesh size. For

example, for the unit circle the condition number is exactly 2, and it is independent of the number of

discretization points. In addition, for the interior problem, there are only two eigenvalues – therefore
GMRES converges in two iterations. For multiply connected domains the condition number scales with the

number of simply connected components. In [18] an effective preconditioner is proposed; our implemen-

tation includes this preconditioner. However, as the matrix of the system is dense, each iteration is

expensive and further acceleration is required for large problems.

The discretized equation (16) can be written in the vector form as

u ¼ � 1

2
IlþDJWlþ nnTðJWlÞ: ð26Þ

u, l and n are the vectors of boundary velocity, density and normal, respectively; D is the matrix of the

double layer kernel; J is the diagonal Jacobian matrix of the curve parameterization; and W is the diagonal
matrix of quadrature weights. The essential step of the iterative solver is the multiplication of matrix

� 1
2
IþDJWþ nnTJW. Since J and W are all diagonal matrices, the only expensive step is the multipli-

cation with D.

This matrix-vector multiplication operation costs OðN 2Þ where N is the number of Nystr€oom points. To

accelerate the method we should take advantage of the fact that Green�s function rapidly decays with

distance, and thus the double and single layer kernels become nearly degenerate. Several techniques exist to

accelerate this matrix-vector multiplication, for example the Barnes-Hut algorithm (to OðN logNÞ) and the

fast multipole method (to OðNÞ).
We use a fast matrix-vector multiplication algorithm, which was first proposed in [27,28] for the single

layer formulation of the Laplace equations in triangulated domains. This method uses the singular value

decomposition (SVD) to sparsify large low-rank blocks of the discretized double layer operator. The basic

ideas of the fast multipole and the SVD-based method are illustrated in Fig. 2.

The dense linear map D represents the hydrodynamic forces of n source points to m target points. If we

assume that these two groups are geometrically well separated the D is expected to be numerically low rank,

i.e. the ratio s=s1 < � for all but r � m singular values s, where s1 is the largest singular value and � is a

constant determining the accuracy of the computations. Fast multipole methods use truncated analytic
expansions and translation operators to sparsify D. The singular value decomposition computes a coor-

dinate transformation, for which D is diagonal, and eliminates the vectors corresponding to the small

Fig. 2. Low rank approximations of discrete interaction. (a) The dense interaction. (b) Fast multipole method. (c) SVD-based method.

Arrows represent linear transformations.

330 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
singular values. Compared with fast multipole method, SVD-based compression is kernel independent and

easy to implement. However, its main disadvantage is the higher algorithmic complexity, OðN logNÞ in-

stead of OðNÞ. In [27] an orthogonal recursive bisection to create the partition into low-rank blocks. Here

we give a version of the algorithm using a hierarchical structure based on curve subdivision. There are two

algorithms: the algorithm that sets up the hierarchical matrix representation and the algorithm imple-

menting matrix-vector multiplication.

5.1.1. The setup algorithm

The input to the algorithm is the collection of boundary curves and quadrature points, and three pa-

rameters: p, a and �. Parameters p and � are used in the computation of the low-rank representation for

blocks and a is used to determine when sets of quadrature points are well separated. The precise meaning of

the parameters is described below.

The output is a hierarchical representation of the matrix. To define the matrix representation, we par-

tition quadrature points into a geometry-based hierarchy. First, we partition the boundary curves into
several top level segments E0

i ; i ¼ 0; . . . ; ns � 1, each containing roughly the same number of quadrature

points. Second, we subdivide every E0
i into two segments: E1

2i and E1
2iþ1. We repeat this procedure at each

level and we stop when the finest level segment has less than np quadrature points in it. We take L to be the

number of levels with levels numbered 0; . . . ; L� 1. For each segment at each level, we calculate a bounding

box of its quadrature points. For a segment X , we use BðX Þ to denote its bounding box, IðX Þ to denote the

set of indices of its quadrature points, cðX Þ center of BðX Þ, rðX Þ the radius of BðX Þ, and left(X) and

right(X) the left and right subsegments of X .
D is represented as a collection of blocks organized into a hierarchy; each block corresponds to the

interaction between two segments. Similarly to FMM methods, we use a low-rank representation if two

segments are well separated; otherwise we compute a dense block.

Algorithm 1 construction of D

function constructMatrix(top_segment_list)

matrix_trees :¼ ;
for X 2 top_segment_list do

matrix_trees :¼ matrix_trees [constructSegmentTreeðX,top_segment_listÞ
end for
return matrix_trees

end constructMatrix

function constructSegmentTree(X, segment_list)

node.submatrices, node.leftchild, node.rightchild :¼ ;
node.segment :¼X

near_ list :¼ ;
for Y 2 segment_list do
if separated(B(X), B(Y)) then
node.submatrices :¼ node.submatices [{(Y, SPARSE, constructSparse(X,Y))}

else
near_list :¼ near_list [Y

end if
end for
if level(X)¼L-1 then
for Y 2 near_ list do
node.submatrices :¼ node.submatices [{(Y ;DENSE; constructDense(X,Y))}

end for
else

new_list :¼ ;
for Y 2 near_list do
new_list :¼ new_list [{left(Y),right(Y)}

end for
node.leftchild :¼ constructSegmentTree(left(X), new_list)
node.rightchild :¼ constructSegmentTree(rightðX Þ, new_list)

end if
return node

end constructSegmentTree

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 331
Algorithm 1 is the pseudocode for constructing the matrix D. The matrix is represented as a set of trees,

one tree per each top-level segment. Each node of the tree on level l corresponds to a segment El
j. Each non-

leaf node corresponding to a segment X contains a list of matrices in a low-rank sparse representation

described below; each matrix corresponds to a segment on the same level as Y , for which a separation

criterion is satisfied. In addition, a non-leaf node contains pointers to two nodes corresponding to the

subsegments of X . The leaf nodes contain only a list of matrices; for segments Y which do not satisfy the

separation criterion a dense matrix is stored.
The main function constructMatrix simply calls constructSegmentTree on each top-level segment X to

compute the interaction between X and all other top-level segments. Function constructSegment-

Tree(X,segment_list) construct a tree representation of the submatrix of D corresponding to interactions of

X with segments from segment_list. Function separated(B1,B2) is used to test whether two bounding boxes

B1 and B2 are well separated. If the ratio of the distance between centers cðB1Þ and cðB2Þ to the sum of their

radii is less than a constant a, they are regarded to be not well separated and either further refinement is

necessary, or a dense matrix has to be built.

332 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
When two segments X and Y are well separated, constructSparse is called to construct a low-rank

representation of the interaction matrix DX ;Y between the sets of quadrature points of X and Y , i.e. to
find a column basis of matrix DX ;Y and represent the whole matrix DX ;Y as a linear combination of this
basis:
DX ;Y � UrVr
(Fig. 2).

Let SX and SY be the set of p sampling points from the sets X and Y respectively. For the time being,

we assume p to be significantly greater than the numerical rank r of the interaction matrix DX ;Y . We

explain the estimation of r and p, and the selection of sampling points along with the numerical ex-
periments.

First we construct DX ;SY and use SVD or modified Gram–Schmidt to get Ur which is of size n� r, where r
is the numerical rank of matrix DX ;SY . The Modified Gram–Schmidt algorithm is faster, with small loss of

compression effectiveness. In our implementation we use a column pivoted Modified Gram–Schmidt

method; the pivoting is used to detect the maximum 2-norm of the remaining vectors and we stop the

process whenever that maximum is less than the prescribed constant �.
The matrix Ur is used to compute Vr. First we evaluate DSX ;Y , and then we subsample Ur by choosing ~UU

whose rows are the rows of Ur corresponding to the set of points SX . We compute Vr from the least square
system ~UUVr ¼ DSX ;Y .
5.1.2. Complexity analysis

There are three important observations on which the complexity analysis of the construction algorithm

are based. First, as we pointed out, the time complexity of constructSparseðX ; Y Þ can be bounded by

C � n, where n is the number of points in the larger of X and Y . Second, the complexity of construct-

DenseðX ; Y Þ is Oðn2Þ. Lastly, except for the segments at the top level, every segment gets an Oð1Þ number

of segments in the segment_list from its parent segment, and passes also an Oð1Þ number of segments in
the new_list to its children, under the assumption that the boundary curve is smooth and the distribution

of quadrature points is uniform. Consider a segment X , the segments in the near_list of X have centers in

a circle centered at cðX Þ with radius ð2aþ 1ÞrðX Þ. There are about 2aþ 1 segments in this near_list due

to the assumption about uniformity. Therefore, the new_list contains about 4aþ 2 segments because each

segment in the new_list is a child of some segment in near_list . However, among them, there would be

roughly only half, about 2aþ 1, of them falling in the the circle centered at cðleftðX ÞÞ with radius

ð2aþ 1ÞrðleftðX ÞÞ because rðleftðX ÞÞ is half the size of rðX Þ, and the same for leftðX Þ. We use g to

denote a bound on 2aþ 1.
At the coarsest level, each segment computes its interaction with the remaining maxðns � g; 0Þ top level

segments using the SVD method. The work can be bounded by ns � ns � ðCnp2L�1Þ. For any other level i, we
have Oð2insÞ segments, each of which computes the interaction with g other segments at the same level. This

work is proportional to 2ins � g � ðCnp2L�1�iÞ. For the finest level each segment also must compute the dense

interaction between itself and its neighbors, at most g of them. This costs 2L�1ns � g � n2p. The total cost can
be bounded by
ns � ns � ðCnp2L�1Þ þ
XL�1

i¼1

2ins � g � ðCnp2L�1�iÞ þ 2L�1ns � g � n2p

6Cns � nsnp2L�1 þ Cg � L � nsnp2L�1 þ gnp � nsnp2L�1 ¼ ðCns þ Cg � Lþ gnpÞ � nsnp2L�1:

Algorithm 2 Matvec of D

function matVec(matrix_trees, x)

b :¼ 0

for tree 2 matrix_trees do
b :¼matVecSegment(tree, x, b)

end for
return b

end matVec

function matVecSegment(node, x, bold)
b :¼ bold
for (type, matrix, src) 2 node.submatrices do
if type ¼ DENSE then

b(I(node.segment)) :¼ b(I(node.segment)) + matVecDense(mat, x(I(src)))

else
b(I(node.segment)) :¼ b(I(node.segment)) + matVecSparse(mat, x(I(src)))

end if
end for
b :¼matVecSegment(leftchild, x, b)

b :¼matVecSegment(rightchild, x, b)

return b

end matVecSegment

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 333
Cns, Cg and gnp are all constants. nsnp2L�1 is the total number of quadrature points N . L is the depth of the

hierarchical structure, so it is OðlogNÞ. Therefore the total complexity ðCns þ Cg � Lþ gnpÞ � nsnp2L�1 is

bounded by OðN logNÞ.

5.1.3. Matrix-vector multiplication

Algorithm 2 is the pseudocode for matrix-vector multiplication using the SVD-based representation

of D. Function matVecDense simply multiplies the densely stored matrix with a vector. On the other

hand, matVecSparse of two segment X and Y uses the sparse representation: DX ;Y ¼ UrVr. Since Ur and

Vr are both of size n� r, assuming n is the size of X and Y , multiplication with Vr and Ur is much

cheaper than multiplication with DX ;Y . Fig. 3 shows the sparse structure of a simply connected

boundary.

5.1.4. Numerical experiments

All experiments in this section were performed on a Sun 450 MHz Ultra80 workstation. We use three

parameters in the matrix construction algorithm: a for separation detection, � for modified Gram–Schmidt

algorithm and p for sampling matrix columns and rows. The value of a is usually chosen to be 1.5–2. Notice

that unlike Barnes-Hut or fast multipole algorithms, a does not have an effect on the accuracy of the al-

gorithm. In our context is just used as an oracle to activate the low-rank approximation. The tolerance � is
the most important parameter; it determines the speed and accuracy of the SVD-approximation and in

some sense corresponds to the truncation of the analytic expansions in the fast multipole method. As-
suming the SVD was computed exactly (without sampling) � is the relative error in the potential calculation.

Once � is chosen, SVD automatically selects the number of required moments to meet the error criterion.

The estimation of r and p can be obtained by the following incremental procedure. For two segments X
and Y , we first choose a small number for p, and use these p sampling points to construct the SVD rep-

resentation of DX ;Y . If the numerical rank r of DX ;Y is close to p, which means that the number of sampling

points p is not enough, then we double p and compute the SVD representation of DX ;Y again until r is much

Fig. 3. The sparsity structure of matrix DX ;Y of a boundary curve. The curve is discretized into 1024 quadrature points. The matrix is of

size 2048� 2048. The number in each block denotes its numerical rank r. The black blocks along the diagonal correspond to close

interaction, and thus are stored densely.

334 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
smaller than p. In practice, we stop when r is less than p=3, which ensures that the algorithm can find a good

basis U of matrix DX ;Y with very high probability. The position of these p sampling points are chosen to be

evenly spaced on the boundary.

In Table 1 we report wall-clock time and accuracy comparisons between the dense and the SVD-spar-

sified double layer operators. We solve two different problems, a cubic flow, and a flow that corresponds to
Table 1

Comparison between the dense matrix matrix-vector multiplication and the SVD-based matrix-vector multiplication for two different

flow fields and geometries

Domain, solution N Matrix Setup Solve jujerr perr

Fig. 4(a) 736 dense 1.79 4.89 2:34� 10�6 2:67� 10�7

svd 2.11 4.56 7:28� 10�6 3:18� 10�6

Cubicflow 1472 dense 6.37 17.0 8:82� 10�8 2:30� 10�8

svd 5.25 7.98 8:12� 10�6 4:63� 10�6

2944 dense 23.9 58.9 1:04� 10�8 2:65� 10�9

svd 12.2 15.8 5:65� 10�7 2:91� 10�7

5888 dense 100 224 1:30� 10�9 3:10� 10�10

svd 22.7 30.9 5:39� 10�7 2:31� 10�7

Fig. 4(b) 384 dense 0.44 0.52 1:80� 10�6 1:07� 10�6

svd 0.74 0.37 5:08� 10�6 3:31� 10�6

Stokeslet 768 dense 1.53 2.75 2:47� 10�7 1:40� 10�7

svd 1.35 1.14 1:95� 10�6 2:89� 10�6

1536 dense 6.18 10.1 3:44� 10�8 1:80� 10�8

svd 3.01 2.50 1:07� 10�6 9:46� 10�7

3072 dense 29.1 39.3 4:63� 10�9 2:29� 10�9

svd 5.91 5.40 9:85� 10�7 4:84� 10�7

Setup time includes the construction of the matrix and the preconditioner. Solve time is the time used by GMRES solver. We see

that as the problem scales, the dense approach grows up quadratically, while SVD-based approaches scales almost linearly.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 335
a Stokeslet. We use pointwise error on a fixed number of points to evaluate the accuracy. We first solve the

integral equation for the hydrodynamic density and then we evaluate the velocities and pressures with (9).

The sparsification is divided to setup a phase and an iterative solution phase. As expected, the setup time
for the dense matrix scales with the square of the number of unknowns. The fast methods scales almost

linearly since the logðNÞ is quite small. In this example we have used a fixed tolerance � ¼ 10�4 – that is why

there is no improvement in the error for the larger problem. Table 2 compares running time and accuracy

for different choices of �, for the geometry depicted in Fig. 4(b) with a Stokeslet flow. As expected the

accuracy improves without significant increase in running time.

Perhaps a more representative example for the scalability of the method is depicted in Table 3. The

geometry is that of Fig. 4(c) for a Stokeslet flow. We solve for two different values of � and for a eight-fold

increase in the problem size. It is apparent that about 10,000 quadrature points are enough to get single
precision accuracy. The running times increase almost linearly with the problem size (cf. Fig. 5).

5.2. Regular grid solver

There exist several methods for the efficient solution of linear systems representing discretizations of

elliptic PDEs. Examples are FFTs, multigrid and two-level domain decomposition algorithms which are

asymptotically optimal. However for medium size problems it turns out the domain decomposition
methods are faster. We have developed our code on top of the PETSc library [3,4]. PETSc includes several

methods for regular grids such as domain-decomposition preconditioners and multigrid. In Table 4

we report timings for four different preconditioners: block-Jacobi, single-grid additive Schwarz, two-grid

additive Schwarz, and a V-cycle multigrid. We report isogranular scalability results for problems up to
Fig. 4. Test domains. Solid curves represent the boundary of the domain. The dots in the domains are the points used for error

estimation.

Table 2

Running times and pointwise errors for the SVD-based sparsification

� Setup(s) Solve(s) jujerr perr Max rank

10�2 3.48 7.13 3:95� 10�4 1:84� 10�4 8

10�3 4.18 8.09 3:67� 10�5 1:43� 10�5 10

10�4 5.49 7.95 6:68� 10�6 4:63� 10�6 12

10�5 6.00 8.59 8:31� 10�7 5:82� 10�7 14

10�6 6.99 9.71 1:77� 10�7 9:49� 10�8 16

10�7 7.93 10.8 1:17� 10�7 4:65� 10�8 18

We report results for the geometry depicted in Fig. 4(b) for a Stokeslet flow. We vary the numerical rank tolerance � and we hold

the number of quadrature points fixed (768); here max rank indicates the maximum numerical rank for a SVD-approximated block.

Table 3

Running times and pointwise errors for the SVD-based sparsification

� L=N Setup(s) Solve(s) jujerr perr Max rank

10�4 4/4544 49.6 111 9:02� 10�6 1:63� 10�5 14

5/9088 118 226 1:52� 10�6 1:59� 10�6 14

6/18,176 217 435 1:35� 10�6 1:02� 10�6 14

7/36,352 487 904 1:07� 10�6 9:24� 10�7 14

10�6 4/4544 67.2 137 4:64� 10�7 1:11� 10�6 19

5/9088 164 287 1:85� 10�7 2:60� 10�7 19

6/18,176 294 559 1:09� 10�7 1:23� 10�7 19

7/36,352 682 1172 1:23� 10�7 1:57� 10�7 19

We report results for the geometry depicted in Fig. 4(c) (64 circles) for a Stokeslet flow; for two different values of the numerical

rank tolerance � and for an eightfold increase in problem size. Observe the almost linear scaling in setup and solve running times with

the problem size. For this example about 10,000 Nystr€oom points give single precision machine accuracy.

Fig. 5. Plots of the data from Table 1 with linear fit for SVD-based solver and quadratic fit for the dense solver.

Table 4

In this table we compare iteration count and wall-clock time for four different linear solvers for the discretized Stokes problem

grid p BJ ASM 2L-ASM MG

it sec it sec it sec it sec

1282 2 296 78 161 45 26 3 34 11

2562 4 602 350 330 220 21 6 47 36

5122 8 1240 1450 692 950 18 11 56 98

10242 16 2578 6100 1391 3910 19 24 57 260

All use the same Krylov solver (conjugate residuals). What differs is the preconditioner. Here grid is the number of grid points (3

degrees of freedom per grid point); p is the number of processors; BJ denotes a block-Jacobi domain-decomposition with ILU(1)

preconditioning in each subdomain; ASM is an additive Schwarz preconditioner with fixed overlap; 2L-ASM is a two level additive

Schwarz preconditioner in which the fine grid uses the ASMmethod described above and the coarse grid is solved redundantly on every

processor using a sparse LU factorization. The coarse grid is 10 times smaller;MG is a five-level single V-cycle multigrid preconditioner

with sparse LUs for the coarsest level and the BJ preconditioner for the rest. For each different preconditioner we report wall-clock

time in seconds (sec) and iteration counts (it) for a relative residual reduction of 1� 10�7. The largest problem has 10 million unknowns

and it took 15 s to solve. The preconditioners are parts of the PETSc library. The runs were performed on a 900 MHz Compaq server

at the Pittsburgh Supercomputing Center.

336 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348

Fig. 6. Domains used in numerical examples.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 337
10 million unknowns on 16 processors. Our intention is not a detailed comparison between the different

solution techniques, but to give an numerical evidence of the scalability of the different preconditioners for

the Q1–Q1 discretization.

As expected the single-grid preconditioners perform quite poorly compared to multilevel methods. For

the latter we can observe mesh size-independence on the number of Krylov steps. Notice that we quadruple

the problem size and we double the number of processors. Thus, for an optimal algorithm, wall-clock time

should double with the problem size. Indeed, this is the case for the 2L-ASM preconditioner which out-
performs the other methods. Multigrid is optimal in the number of iterations, but (for the specific imple-

mentation) it is significantly slower, probably due to interprocessor communication overhead. We have not

attempted to fine-tune the multigrid preconditioner and thus we do not advocate one method over the

other. We have chosen the two-level method because is somewhat simpler to combine with the boundary

integral solver. For details on the the theory of two-level preconditioners for indefinite elliptic systems see

[30].

Finally by comparing Table 4 with Tables 1 and 2, we can observe that for simple geometries the regular

grid solver takes similar time with the boundary integral solver. For more complicated geometries the cost
of the regular grid solve becomes quite small compared to the boundary integral solver. Indeed for the 64

spheres problem, the boundary integral setup and solve requires 160 s for the lowest accuracy (Table 3),

whereas the regular grid solver for the 1282 problem, takes 3 s on two processors on the Alpha server which

correspond to less than 12 s per solve on the Sun workstation. Since our method requires two regular grid

solves, the time spent to calculate the distributed terms and the solution everywhere is 10% of the time spent

on the boundary integral solver. 3
6. Numerical experiments

In this section we test EBI on problems with exact analytic solutions. We assess the pointwise accuracy

of the solver and we investigate the effects of the accuracy of the boundary integral solver on the overall

accuracy of the method.

We present results for four different problems. The solutions are restricted to the target domains (Fig. 6),

which are embedded in the unit square. We have chosen the following analytic solutions: a Poiseuille flow

u ¼ yð1f � yÞ; 0g; p ¼ �2x;

a ‘‘cubic flow’’
3 The time required on computing the jumps, the intersections and the derivatives of the hydrodynamic densities is negligible

compared to the domain an boundary solvers.

Table 5

Convergence results for the cubic flow inside a circle

grid dense-1 dense-2 svd

u p u p u p

322 2:43� 10�3 1:19� 10�1 8:35� 10�4 2:31� 10�2 8:84� 10�4 2:43� 10�2

642 8:06� 10�4 1:07� 10�1 1:81� 10�4 1:33� 10�2 1:90� 10�4 1:37� 10�2

1282 3:06� 10�4 8:44� 10�2 4:95� 10�5 1:83� 10�3 5:23� 10�5 2:16� 10�3

2562 1:20� 10�4 4:21� 10�2 1:12� 10�5 4:79� 10�4 1:20� 10�5 7:54� 10�4

In (dense-1) TESCs were first-order accurate; in (dense-2) TESCs include second-order derivatives. In (svd) we use second-order

TESCs combined with the svd acceleration. The rank tolerance � is 10�7; (u) and (p) denote error in the infinity norm for the velocities

and pressures.

338 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
u ¼ y3; x3
� �

; p ¼ 6xy;

a ‘‘body force flow’’

u ¼ 2
�
� x2y; y2x

�
; p ¼ sinðxyÞ; b ¼ 4m yð1f þ cosðxyÞÞ;� xð1þ cosðxyÞÞg:

We also use a Stokeslet (7) centered at ð0:5; 0:7Þ and oriented along e ¼ f1; 1g. The corresponding pressure

is given by

p ¼ 1

2p
r

q2
� e:

All experiments in this section were performed on a SUN Ultra80, 450 MHz workstation (single
processor).

In the first example we use the cubic flow solution for the interior problem in a circle of radius 0.3.

Convergence results are presented in Table 5. We report and compare convergence rates for first-order

accurate (dense-1) and second-order accurate TESCs (dense-2); for the latter we also report results for the

SVD acceleration (svd). The integral equation was discretized by 320 quadrature points. Increasing this

number did not affect the accuracy significantly. For the first-order TESCs the convergence rate for the

velocity is superlinear and hence suboptimal; with second-order TESCs both dense and sparse computa-

tions result in optimal convergence rates for the velocities and pressures.
In the second example we repeat the same test, but for the geometry depicted in Fig. 6(b) and for two

different analytic solutions, the Poiseuille and the body-force flow. In this example the number of

quadrature points for the integral equation varies. For dense-1 (first-order) we used 768 points for the 322

grid, 1546 for the other two grids, and 3072 points for the 2562 grid. For the dense-2 (second-order) we

used 768 points for all background grid sizes. In svd we used 1536 points. The increased number of

quadrature points did not improve the convergence rate for the first-order TESCs. Optimal pointwise

convergence rates are observed for the velocities and pressures for both the dense and SVD versions. The

exact solution along with the error distribution for three different grids are shown in Fig. 7 (for the
Poiseuille flow) (cf. Table 6).

In our previous examples the approximation tolerance for the SVDs was kept constant to 10�7. For

the following test we have chosen an example for which both the geometry and the solution vary rapidly

close to a specific location. We look at the 2D-heart-shaped domain, Fig. 6(b), for which the exact

solution is given by the stokeslet solution from a pole located at (0.5,0.7). This location is very close to

the rapidly changing geometry at the top of the 2D-heart. As a result we expect that a large number of

quadrature points is required to obtain sufficient accuracy. Table 7 summarizes the results for this ex-

periment and Fig. 8 depicts the exact solution and the error distribution. The number of necessary
quadrature points to obtain optimal pointwise convergence in the background grid was determined

Fig. 7. Exact solution and error distribution (top to bottom), for 642, 1282, and 2562; the error plot for the 2562 grid is omitted. The

solution is a Poiseuille flow.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 339

Table 6

Convergence results for two flows in the domain Fig. 6(a)

grid dense-1 dense-2 svd

u p u p u p

Poiseuille

322 8:84� 10�3 1:01� 10�1 4:30� 10�4 3:70� 10�2 4:83� 10�4 3:79� 10�2

642 2:71� 10�4 9:33� 10�2 1:31� 10�4 9:84� 10�3 1:43� 10�4 1:09� 10�2

1282 1:39� 10�4 4:07� 10�2 2:76� 10�5 3:67� 10�3 2:98� 10�5 2:86� 10�3

2562 2:93� 10�5 1:57� 10�2 7:45� 10�6 2:22� 10�3 7:51� 10�6 8:14� 10�4

Body force

322 3:47� 10�2 8:99� 10�1 2:25� 10�2 6:31� 10�2 1:36� 10�3 7:28� 10�2

642 2:33� 10�3 2:68� 10�1 5:62� 10�4 5:03� 10�2 6:67� 10�4 4:19� 10�2

1282 6:23� 10�4 1:45� 10�1 1:46� 10�4 3:87� 10�2 1:47� 10�4 2:67� 10�2

2562 2:43� 10�4 1:15� 10�1 3:58� 10�5 1:06� 10�2 4:31� 10�5 1:14� 10�2

Here (dense-1), (dense-2), (svd) and (u), (p) are as in Table 5.

Table 7

Convergence results for a stokeslet flow generated by a pole just outside the domain

grid dense-1 svd-1 svd-2

u p u p u p

322 7:01� 10�3 3:36� 10�1 7:05� 10�3 2:97� 10�1 7:05� 10�3 2:46� 10�1

642 1:01� 10�3 1:55� 10�1 1:08� 10�3 2:27� 10�1 9:96� 10�4 1:57� 10�1

1282 2:10� 10�4 9:70� 10�3 4:12� 10�4 1:21� 10�1 2:13� 10�4 1:48� 10�2

2562 4:61� 10�5 4:16� 10�3 9:55� 10�5 4:69� 10�2 4:80� 10�5 1:04� 10�2

Here the jumps are second-order accurate. All problems use 1664 quadrature points. In (dense-1) we evaluated a dense double layer

matrix. In (svd-1) and (svd-2) we sparsify using variable rank tolerance; 10�3 for the former and 10�5 for the latter.

340 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
experimentally based on dense solves; nearly 800 points are enough to resolve the problem; in this test we

took 1664 quadrature points; we found that this extra discretization does not help as we can see by

comparing the columns of Table 7. We use dense-1 as the reference calculation. In svd-1 the truncation

tolerance for the modified Gram–Schmidt is 10�3; it results in suboptimal convergence rates. By using a

tighter tolerance, 10�5, we recover optimal rates. In Fig. 8 we show the exact solution and the pointwise

error distribution.

In the next example we look at an interior flow (body force flow) around 81 circles. For the 642 grid we
use 9088 Nystr€oom points and for the two finer grids we use 18,176 points. We vary the accuracy of the SVD

approximations by truncating at 10�3 (svd-1), 10�5 (svd-2), and 10�7 (svd-3). Table 8 summarizes the
Table 8

Convergence rates and pointwise accuracy for the 81-circle geometry and for the ‘‘body-force’’ flow

grid svd-1 svd-2 svd-3

u p u p u p

642 5:89� 10�2 7:72� 10�0 5:65� 10�3 4:76� 10�1 5:79� 10�3 4:89� 10�1

1282 2:65� 10�2 5:53� 10�0 2:38� 10�4 5:54� 10�2 1:68� 10�4 1:57� 10�2

2562 6:61� 10�3 2:99� 10�0 7:75� 10�5 2:33� 10�2 3:45� 10�5 6:95� 10�3

Here (svd-1) is computed with � ¼ 10�3, (svd-2) with � ¼ 10�5, and (svd-3) with � ¼ 10�7. Optimal convergence rates can be verified

for svd-3.

Fig. 8. Exact solution and error distribution (top to bottom), for 642, 1282, and 2562; the error plot for the 2562 grid is omitted. The

solution is the Stokeslet located at (0.5,0.7).

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 341

Fig. 9. Exact solution and error distribution (top to bottom), for 642, 1282, and 2562; the error plot for the 2562 grid is omitted. The

exact solution is a the body force flow.

342 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348

Fig. 10. Solution for a problem with Dirichlet conditions corresponding to a unit wind flow, presented for two different geometries.

The two bottom pictures depict the resulting streamlines.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 343
convergence study. Optimal rates are obtained for the most accurate representation of the double layer.

Fig. 9 depicts the exact solution and the error distribution. For the last example we do not have an analytic

solution, and we just plot the solution in Fig. 10. The boundary conditions are f1; 0g on the enclosing

curve, and zero on the internal domains.
7. Conclusions and extensions

We have presented a second-order accurate solver for the Stokes operator defined on arbitrary geometry

domains. We use a hybrid boundary integral, finite element formulation to circumvent the need for mesh

generation. We employ an efficient double layer formulation for the integral equations. The method

requires two regular grid solves and one integral solve.

344 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
We looked in detail the problem for which the boundary conditions for the velocities given. The method

extends to Neumann and mixed boundary value problems. The latter case however, the integral equations

require preconditioning.
We also presented scalability and convergence studies for both the regular and boundary solvers. We

have implemented an easy way to to accelerate the matrix-vector multiplications required in the solution of

the integral equation.

One restriction of the method as we presented it, is the stringent requirements on the regularity of the

boundary geometry. In the case of geometries with corners the singularities can be resolved analytically and

their contribution to the jump terms can be directly evaluated at the stencil points. In 3D this is no longer

possible. However this can be circumvented by replacing the jump computation by direct evaluation. For

example the jump terms can be computed to very high accuracy by plugging in the exact solution in the
stencils that cross the boundary. The exact solution can be obtain by direct evaluation of the velocity. This

will require adaptive quadratures – but only for the points close to a corner.

Another limitation of the EBI method is that it can be used only for problems with a domain that can be

partitioned to subdomains in which the fundamental solution is known. The latter, however, does include

problems with piecewise constant coefficients, and thus EBI is suitable for a quite large class of problems.

Higher order accurate extensions are possible with further differentiation of the hydrodynamic density

and use of high-order or spectral regular grid discretizations.
Acknowledgements

We thank L. Greengard, M. Shelley and C. Peskin for valuable discussions leading to the formulation of

the approach.
Appendix A. Computation of jumps for the Stokes operator

Here we show how the jumps on the velocities and pressures can be computed. We use ½½��� to denote the

jump of a function across the interface (exterior–interior). We use D to denote Gateaux differentiation. We
also assume that the curve parameterization t 7!yðtÞ is smooth enough (at least in C2). We write _yy and €yy to

denote the first and second derivative with respect t. In order to derive the jumps for the pressure we first

define a potential q corresponding to a solution of the Laplace operator

qðxÞ ¼
Z
c

r � nðyÞ
q2

/ðyÞdcðyÞ; x 2 x:

Then qðxÞ satisfies �Dq ¼ 0, in R2=c with appropriate Dirichlet boundary conditions. From potential

theory we know that the extension of q outside x is discontinuous. More precisely the following relations

hold true:

½½q�� ¼ /; ðA:1Þ
½½Dq � n�� ¼ 0: ðA:2Þ

The first equation gives the zeroth-order jump. To compute the first-order jumps we differentiate the first

equation (with respect to t) and by the chain rule we obtain

½½Dq�� � _yy ¼ _// ðA:3Þ

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 345
for the tangential derivative. Eqs. (A.2) and (A.3) define a system with two equations and two unknowns,

½½oxq��; ½½oyq��. Second-order derivatives can be computed by taking tangential derivatives, and the jumps in

the Laplacian. Thus we obtain

½½Dq�� ¼ 0; ðA:4Þ
½½D2q�� _yy � _yyþ ½½Dq�� � €yy ¼ €//; ðA:5Þ
½½D2q�� _yy � nþ ½½Dq�� � _nn ¼ 0: ðA:6Þ

Now we have three equations with three unknowns: ½½oxxq��; ½½oyyq��; ½½oxyq��.
The pressure jumps can be derived from the above relations. Since the discretization is only first-order

accurate for the pressure, we only need zero and first-order jumps. For the double layer potential we

have

pðxÞ ¼ K½l�ðxÞ ¼ 1

2p

Z
c
$x

r � nðyÞ
q2

� ð�2mlðyÞÞdcðyÞ:

Let qi be given by

qi ¼
1

2p

Z
c

r � n
q2

/i dc; i ¼ 1; 2;

with

/i ¼ �2mli:

Then

p ¼
X
i¼1;2

oiqi;

and hence

½½p�� ¼
X
i¼1;2

½½oiqi��;

that is the zeroth- and first-order jumps in the pressure correspond the sum of the first- and second-order

jumps of qi.
For the double layer formulation of the velocity we use similar relations with (A.1) and (A.2). These

relations can be derived by taking appropriate limits across the interface [46]. In fact, if the velocity is given

by

uðxÞ ¼ 1

p

Z
c

r� r

q2

r � nðyÞ
q2

wðyÞdcðyÞ;

then the following interface conditions hold for the jumps across the interface:

½½u�� ¼ l; ðA:7Þ
½½Sn�� ¼ ½½�pIþ mðDuþ DuTÞn�� ¼ 0: ðA:8Þ

346 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
In order to construct TESCs for the momentum and incompressibility equations we need to compute ½½Du��
and ½½D2u��. (We already have ½½p�� and ½½Dp��.) If we differentiate (A.7) (with respect the curve parameter-

ization t), we obtain

½½Du�� _yy ¼ _ll: ðA:9Þ

Eqs. (A.9) and (A.8) give four equations with four unknowns ½½Du��. If we differentiate once more and use

the momentum equation balance we obtain (u ¼ fux; uyg, n ¼ fnx; nyg)

m½½Du�� ¼ �½½Dp��;
½½D2ux�� _yy � _yy
½½D2uy �� _yy � _yy

()
¼ €ll� ½½Du��€yy;

½½D2ux�� _yy � n
½½D2uy �� _yy � n

()
þ ½½D2ux�� _yynx þ ½½D2uy �� _yyny ¼ ½½Dp�� � _yy� ½½mðDuþ DuTÞ�� _nn:

This system has six equations with six unknowns.
Appendix B. Stencils for the FEM discretization of Stokes equations on a regular grid

As discussed in Section 4.2 the finite element discretization on a regular grid is equivalent to a finite

difference discretization for a certain choice of stencils.
The stencils are shown explicitly in Fig. 11.

Interior stencils a and d are second-order accurate. Stencils b and c are used only in discretization of the

stabilization term which has an extra scaling factor h2 in front of it. Although these stencils do not ap-

proximate Laplacian, because of the scaling factor the terms in the equation corresponding to these stencils

vanish as OðhÞ. Edge and corner stencils for first derivatives e; f ; g are only first-order accurate; however

these stencils are used only at the boundary in equations for pressure, hence do not affect the L2 norm of the

truncation error.
Fig. 11. Essentially different stencils of the Q1–Q1 finite element discretization. All other stencils are obtained by reflections of these

stencils about vertical, horizontal and diagonal directions. The coefficients stencils in the upper row are computed as
R
X r/ir/j dX for

a fixed grid point i and varying j, where /i is the Q1–Q1 node functions centered at i. The stencils in the lower row result from

computing
R
X r/i/j dX. The omitted scaling factor for the stencils in the upper row is 1=6h2, and for the lower row 1=12h.

G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348 347
References

[1] M.J. Aftosmis, M.J. Berger, G. Adomavicius, A parallel multilevel method for adaptively refined Cartesian grids with embedded

boundaries, in: 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2000, AIAA.

[2] J.F. Antaki, G.E. Blelloch, O. Ghattas, I. Mal�ccevi�cc, G.L. Miller, N.J. Walkington, A parallel dynamic-mesh Lagrangian method

for simulation of flows with dynamic interfaces, in: Proceedings of Supercomputing 2000, ACM/IEEE, Dallas, TX, 2000.

[3] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, L. Curfman McInnes, B.F. Smith, PETSc home page, 2001. Available from

http://www.mcs.anl.gov/petsc.

[4] S. Balay, W.D. Gropp, L. Curfman McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical

software libraries, in: E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific Computing,

Birkh€aauser Press, Basel, 1997, pp. 163–202.

[5] J. Thomas Beale, Ming-Chih Lai, A method for computing nearly singular integrals, SIAM Journal on Numerical Analysis 38 (6)

(2001) 1902–1925.

[6] G. Biros, Lexing Ying, D. Zorin, The embedded boundary integral method for the incompressible Navier–Stokes equations, in:

Proceedings of the International Association for Boundary Element Methods 2002 Symposium, CDROM, University of Texas at

Austin, Austin TX, 2002.

[7] P. Bochev, R.B. Lehoucq, On finite element discretizations of the pure Neumann problem, Technical Report SAND2001-0733J,

Sandia National Laboratories, Albuquerque, NM, 20001.

[8] B.L. Buzbee, F.W. Dorr, J.A. George, G.H. Golub, The direct solution of the discrete Poisson equation on irregular grids, SIAM

Journal on Numerical Analysis 8 (722–736) (1971).

[9] Xiao-Chuan Chai, O.B. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM Journal on Scientific

and Statistical Computing 13 (1) (1992) 243–258.

[10] T.F. Chan, T.P. Mathew, Domain decomposition algorithms, Acta Numerica (1994).

[11] Li-Tien Cheng, R.P. Fedkiw, F. Gibou, Myungjoo Kang, A second-order accurate symmetric discretization of the Poisson

equation on irregular domains, Journal of Computational Physics 171 (2001) 205–227.

[12] L. Farina, Evaluation of single layer potentials over curved surfaces, SIAM Journal on Scientific Computing 23 (1) (2001) 81–91.

[13] G. Fix, Hybrid finite element methods, SIAM Review 18 (3) (1976) 460–484.

[14] A.L. Fogelson, J.P. Keener, Immersed interface methods for Neumann and related problems in two and three dimensions, SIAM

Journal on Scientific Computing 22 (5) (2000) 1630–1654.

[15] V. Girault, P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer, Berlin, 1986.

[16] R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier–

Stokes equations, Computer Methods in Applied Mechanics and Engineering 112 (1–4) (1994) 133–148.

[17] J.E. G�oomez, H. Power, A multipole direct and indirect BEM for 2D cavity flow at low Reynolds number, Engineering Analysis

with Boundary Elements 19 (1997) 17–31.

[18] A. Greenbaum, L. Greengard, G.B. McFadden, Laplace�s equation and the Dirichlet–Neumann map in multiply connected

domains, Journal of Computational Physics 105 (1993) 267–278.

[19] A. Greenbaum, A. Mayo, Rapid parallel evaluation of integrals in potential theory on general three-dimensional regions, Journal

of Computational Physics 145 (2) (1998) 731–742.

[20] L. Greengard, M. Catherine Kropinski, A. Mayo, Integral equation methods for Stokes flow and isotropic elasticity in the plane,

Journal of Computational Physics 125 (1996) 403–414.

[21] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics 73 (1987) 325–348.

[22] L. Greengard, V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta

Numerica (1997) 229–269.

[23] M.D. Gunzburger, Finite Element for Viscous Incompressible Flows, Academic Press, New York, 1989.

[24] M.D. Gunzburger, R.A. Nicolaides (Eds.), Incompressible Computational Fluid Dynamics, Cambridge University Press,

Cambridge, MA, 1993.

[25] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for Poisson�s equation on irregular domains, Journal of

Computational Physics 147 (1998) 60–85.

[26] C. Kadow, N. Walkington, Design of a projection-based parallel Delaunay mesh generation and refinement algorithm, in:

Proceedings of the 7th US National Congress in Computational Mechanics, 2003.

[27] S. Kapur, D.E. Long, IES_3: efficient electrostatic and electromagnetic simulation, IEEE Computational Science and Engineering

5 (4) (1998) 60–67.

[28] S. Kapur, Jinsong Zhao, A fast method of moments solver for efficient parameter extraction of MCMs, in: Design Automation

Conference, 1997, pp. 141–146.

[29] S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth–Heinemann, London, 1991.

[30] A. Klawonn, Preconditioners for Indefinite Systems, Ph.D. Thesis, Courant Institute, New York University, New York, NY

10021, 1996.

http://www.mcs.anl.gov/petsc

348 G. Biros et al. / Journal of Computational Physics 193 (2003) 317–348
[31] R.J. LeVeque, Zhilin Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular

sources, SIAM Journal on Numerical Analysis 31 (1994) 1019–1044.

[32] R.J. LeVeque, Zhilin Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM Journal on

Scientific Computing 18 (1997) 709–735.

[33] Xiang-Yang Li, Shang-Hua Teng, Generating well-shaped Delaunay meshes in 3D, in: Proceedings of the twelfth annual ACM-

SIAM symposium on Discrete algorithms, ACM, Washington, DC, 2001.

[34] Zhilin Li, A fast iterative algorithm for elliptic interface problems, SIAM Journal on Numerical Analysis 35 (1998) 23–254.

[35] Zhilin Li, Ming-Chih Lai, The immersed interface method for the Navier–Stokes equations with singular forces, Journal of

Computational Physics 171 (2001) 822–842.

[36] A.A. Mammoli, M.S. Ingber, Parallel multipole BEM simulation of two-dimensional suspension flows, Engineering Analysis with

Boundary Elements 24 (2000) 65–73.

[37] A. Mayo, The fast solution of Poisson�s and the biharmonic equations on irregular regions, SIAM Journal on Numerical Analysis

21 (2) (1984) 285–299.

[38] A. McKenney, An adaptation of the Fast Multipole Method for evaluating layer potentials in two dimensions, Computers and

Mathematics with Applications 32 (1) (1996) 33–57.

[39] A. McKenney, L. Greengard, A. Mayo, A fast Poisson solver for complex geometries, Journal of Computatational Physics 118

(1994) 348–355.

[40] S. Norburn, D. Silvester, Fourier Analysis of Stabilized Q1–Q1 Mixed Finite Element Approximation, Numerical Analysis Report

348, The University of Manchester, 1999.

[41] C.S. Peskin, D.M. McQueen, A three-dimensional computational method for blood flow in the heart. I: immersed elastic fibers in

a viscous incompressible fluid, Journal of Computational Physics 81 (1989) 372–405.

[42] C.S. Peskin, B.F. Prinz, Improved volume conservation in the computation of flows with immersed elastic boundaries, Journal of

Computational Physics 105 (1993) 113–132.

[43] Nhan Phan-Thien, Ka Yan Lee, D. Tullock, Large scale simulation of suspensions with PVM, in: Proceedings of SC97, The SCxy

Conference Series, ACM/IEEE, San Jose, CA, 1997.

[44] J.R. Phillips, J.K. White, A precorrected-FFT method for electorstatic analysis of complicated 3-D structures, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 16 (10) (1997) 1059–1072.

[45] H. Power, The completed double layer integral equation method for two-dimensional stokes flow, IMA Journal of Applied

Mathematics 51 (1993) 123–145.

[46] H. Power, L. Wrobel, Boundary Integral Methods in Fluid Mechanics, Computational Mechanics Publications, 1995.

[47] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge,

MA, 1992.

[48] C. Pozrikidis, Interfacial dynamics for Stokes flow, Journal of Computational Physics 169 (2001) 250–301.

[49] W. Proskurowski, O.B. Widlund, On the numerical solution of Helmholtz�s equation by the capacitance matrix method,

Mathematics of Computation 30 (135) (1976) 433–468.

[50] R.J. Renka, Algorithm 790: CSHEP2D: Cubic Shepard method for bivariate interpolation of scattered data, ACM Transactions

on Mathematical Software 25 (1) (1999) 70–73.

[51] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Journal of Computational Physics 60 (1983) 187–

207.

[52] J. Ruppert, R. Seidel, On the difficulty of triangulating three-dimensional nonconvex polyedra, Discrete and Computational

Geometry 7 (3) (1992).

[53] J.R. Shewchuk, Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations, in: Proceedings of the

sixteenth annual symposium on Computational geometry, ACM, Kowloon, Hong Kong, 2000.

[54] J. Strain, Locally-corrected multidimensional quadrature rules for singular functions, SIAM Journal on Scientific Computing 6 (4)

(1995) 992–1017.

[55] K. St€uuben, A review of algebraic multigrid, Journal of Computational and Applied Mathematics 128 (1–2) (2001) 281–309.

[56] A. Wiegmann, K.P. Bube, The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise

smooth solutions, SIAM Journal on Numerical Analysis 37 (3) (2000) 827–862.

[57] A.Z. Zinchenko, R.H. Davis, An efficient algorithm for hydrodynamical interaction of many deformable drops, Journal of

Computational Physics 157 (1999) 539–587.

	A fast solver for the Stokes equations with distributed forces in complex geometries
	Introduction
	Related work
	Finite elements
	Cartesian grid methods
	Integral formulations for the Stokes problem

	Overview and notation
	Notation

	High level description of the EBI method
	The double layer formulation for the Stokes equations
	Jump computation

	Discretization
	Boundary integral equation
	Finite element formulation of the regular region
	Taylor expansion stencil corrections

	The implementation of the EBI method
	Fast BIE solver using SVD
	The setup algorithm
	Complexity analysis
	Matrix-vector multiplication
	Numerical experiments

	Regular grid solver

	Numerical experiments
	Conclusions and extensions
	Acknowledgements
	Computation of jumps for the Stokes operator
	Stencils for the FEM discretization of Stokes equations on a regular grid
	References

